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Abstract
Axiomatic rationality is defined in terms of conformity to abstract axioms. Savage
(The foundations of statistics, Wiley, New York, 1954) limited axiomatic rationality
to small worlds (S,C), that is, situations inwhich the exhaustive andmutually exclusive
set of future states S and their consequences C are known. Others have interpreted
axiomatic rationality as a categorical norm for how human beings should reason,
arguing in addition that violations would lead to real costs such as money pumps. Yet
a review of the literature shows little evidence that violations are actually associated
with any measurable costs. Limiting axiomatic rationality to small worlds, I propose
a naturalized version of rationality for situations of intractability and uncertainty (as
opposed to risk), all of which are not in (S, C). In these situations, humans can achieve
their goals by relying on heuristics that may violate axiomatic rationality. The study
of ecological rationality requires formal models of heuristics and an analysis of the
structures of environments these can exploit. It lays the foundation of a moderate
naturalism in epistemology, providing statements about heuristics we should use in a
given situation. Unlike axiomatic rationality, ecological rationality can explain less-is-
more effects (when using less information can be expected to generate more accurate
predictions), formalize when one should move from ‘is’ to ‘ought,’ and be evaluated
by goals beyond coherence, such as predictive accuracy, frugality, and efficiency.
Ecological rationality can be seen as a formalization of means–end instrumentalist
rationality, based on Herbert Simon’s insight that rational behavior is a function of the
mind and its environment.

Keywords Axiomatic rationality · Ecological rationality · Heuristics ·
Instrumentalism · Less-is-more effect · Naturalism · Uncertainty

Epistemology is often seen as a strictly normative discipline and psychology as a
purely descriptive one. Epistemology tells us how we ought to think, psychology how
we actually think. According to this divide, psychology has nothing to offer for under-
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standing the nature of rationality. This view can be traced from Frege through Russel,
Wittgenstein, and Carnap to the post-World War II analytical philosophy in North
America, Britain, and elsewhere. Axiomatic rationality is a case in point. Abstract
axioms have been interpreted as categorical norms we should follow, even as uni-
versal prescriptions without specified limits. When experiments showed that humans
systematically deviate from these norms, the discrepancy was attributed to flaws in
humans rather than in the norms. In this article, I will argue that axiomatic rationality
can, if at all, provide norms only in small worlds, exemplified by lotteries, where the
exhaustive and mutually exclusive set of future states of the worlds and consequences
is known or knowable, and when these norms are limited to logical coherence. Outside
small worlds, I propose a naturalized version of rationality for situations of uncertainty
(as opposed to risk) and intractability (Gigerenzer and Sturm 2012). In these situa-
tions, humans can achieve their goals by relying on fast-and-frugal heuristics that
may violate axiomatic rationality. These goals go beyond coherence to include pre-
dictive accuracy, frugality, and efficiency. In general terms, a heuristic is ecologically
rational to the degree that it is adapted to the structure of an environment. The study
of the ecological rationality requires formal models of heuristics and an analysis of
the structures of environments these can exploit. It lays the foundation of a moderate
naturalism in epistemology, providing statements about heuristics we should use in a
given situation.

1 Axiomatic rationality and risk

Von Neumann and Morgenstern are credited with having formulated the first set of
choice axioms. However, a normative interpretation of the axioms or themaximization
of expected utility is absent in the three editions of theirTheory of Games and Economic
Behavior (1944, 1947, 1953). Their great contributionwas to prove that if an individual
satisfies a set of axioms, then choices can be represented by a utility function, similar
to the axioms that guarantee that elements can be represented on a number line. By
itself, a representation theorem does not imply a prescription of what people should do.

When Savage (1954), one of the founders of modern Bayesian decision theory, laid
out his own set of axioms, he attached a normative interpretation. But he also stated
limits to his theory using two specific examples, not general principles. The examples
were playing chess and planning a picnic (Savage 1954, p. 16). To such situations,
axiomatic rationality does not apply.

What are the general principles behind these two examples? We can work these out
by considering Savage’s central concept of a small world. A small world consists of
a set S of mutually exclusive and exhaustive future states of the world and a set C of
mutually exclusive and exhaustive consequences of one’s actions if a particular state
occurs. Actions are defined as mappings from states of the world to consequences.
States of the world must necessarily be described at some limited level of detail, hence
the qualifier small. Technically, a small world is described by the pair (S, C).

Playing chess lies outside of Savage’s small worlds because no human or machine
can determine the exhaustive set S of all possible states—here, all sequences of pos-
sible moves—and choose the optimal one. To understand the order of magnitude of
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this limitation, note that chess has approximately 10120 unique sequences of moves
or games, a number greater than the estimated number of atoms in the universe. In
computer science, such problems are called computationally intractable (with subdi-
visions into NP-hard, NP-complete, etc.). An intractable problem is defined as one for
which no efficient (i.e., polynomial-time) algorithm to solve it exists. Thus, the first
general principle that limits axiomatic rationality is intractability.

Planning a picnic, by contrast, is an ill-defined problem. A problem can be ill-
defined in several respects: the set S may not be known because the future is uncertain,
or the set C may not be known because of unexpected events and accidents, or because
the problem is unfamiliar and decision time is scarce. For Savage (1954), the proverbs
“Look before you leap” and “You can cross that bridge when you come to it” mark the
demarcation line between the narrow domain of axiomatic rationality and the world
beyond:

Carried to its logical extreme, the “Look before you leap” principle demands
that one envisage every conceivable policy for the government of his whole life
(at least from now on) in its most minute details, in the light of the vast number
of unknown states of the world, and decide here and now on one policy. This is
utterly ridiculous … It is even utterly beyond our power to plan a picnic or to
play a game of chess in accordance with the principle. (p. 16)

The ‘look before you leap’ principle exemplifies the three pillars of Savage’s decision
theory: a set of choice axioms, the maximization of subjective expected utility, and
Bayesian updating of probabilities. ‘You can cross that bridge when you come to it,’
in contrast, represents situations where (S, C) is not known or knowable.

For the general principle underlying the example of planning a picnic, Binmore
(2008) speaks of large worlds; I will use the term uncertainty. In doing so, I connect
Savage’s two examples with the distinction between risk and uncertainty, as proposed
by Knight (1921). For Knight, risk refers to situations where the probabilities are
known, either by design or from relative frequencies in the long run. Although Knight
does not explicitly refer to unknown state spaces, knowledge of the latter is a prereq-
uisite for knowing the probability distribution. For the purpose of this article, I will
thus treat situations of risk and small worlds (S, C) as identical.

Conjecture 1 The normative power of axiomatic rationality is limited to small worlds.

This conjecture is consistentwithmy reading of Savage (hiswriting is unfortunately
not known for having the same clarity as his axioms). In plain words, axiomatic
rationality cannot prescribe how we should make decisions outside small worlds,
whether or not one accepts coherence as the only norm.

Nevertheless, axiomatic decision theory became interpreted as a theory of rational-
ity without specified bounds, ignoring the concerns of Savage, Allais, Ellsberg, and
others. This intuition-based, categorical interpretation is remarkable, given that the
ideal of a universal calculus proposed by Leibniz had been ridiculed for centuries.
Erickson et al. (2013) argued that the interpretation was partly motivated by the cold
war, with its threat of mutual nuclear destruction in the 1960s and 1970s. Abstract
rationality, utility theory, and game theory embodied the hope that reason could over-
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come the emotions of a Khrushchev or Kennedy. For instance, Searle (2001, p. 6)
reported about a friend who was a high official at the Pentagon:

He went to the blackboard and drew the curves of traditional microeconomic
analysis; and then said, “Where these two curves intersect, the marginal utility
of resisting is equal to the marginal disutility of being bombed. At that point,
they have to give up. All we are assuming is that they are rational. All we are
assuming is that the enemy is rational!”

For cold war rationality, the true enemy was uncertainty and intractability.
In summary,myfirst andmodest proposal is to limit the normative force of axiomatic

rationality to small worlds. The proposal is modest because it refrains, for the purpose
of this article, from further questioning the normative value of axiomatic rationality
in small worlds, as Allais, Ellsberg, and others have done, and from arguing that
axiomatic rationality is merely a description of what Savage or others intuitively
believe we should believe (Bishop and Trout 2005).

1.1 What is the probability that a problem is intractable or uncertain?

To answer this question, it would be necessary to know the set of all problems a person
could encounter, which would entail knowing the exhaustive and mutually exclusive
set of all possible situations. This requirement makes a picnic pale in comparison with
regard to uncertainty. But we can get an idea of the commonness of intractability and
uncertainty by means of several examples.

Consider intractability first. The Travelling Salesperson Problem is likely the
best-known scheduling problem that is nondeterministic polynomial (NP) hard. To
illustrate, consider a politician who runs for president in the US and plans to tour the
country’s 50 largest cities, starting and ending in the same city. How can she determine
the shortest route among the approximately 3×1062 routes? Not even the fastest com-
puters are able to check this many possibilities in the candidate’s lifetime, let alone
before the campaign. A review of scheduling problems reported that 84% were shown
to be intractable, 9% were tractable, and 7% had unknown status (Lawler et al. 1993).
More generally, computer scientists have argued that most interesting problems are
computationally intractable in any implementation, be it neural or machine (Tsotsos
1991).

However, despite intractability, humans can identify ‘near-optimal’ solutions almost
effortlessly using heuristics. One simple rule is the nearest-neighbour heuristic: “Start
with your home city; find the nearest unvisited city and go there; continue until all
cities have been visited.” It can provide a useful strategy when the optimal one is
unattainable.

Intractability is also a serious limit for the epistemic responsibility of evaluating
whether one’s beliefs are coherent, that is, conform to the axioms. Consider the com-
pleteness axiom, one of the choice axioms that are necessary so that preferences can
be represented by a utility function.

Completeness: A � B or B � A.
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Completeness means that one prefers either A weakly over B or the opposite. Every-
thing else is excluded, such as not having any preference or not making a choice. This
axiom appears almost trivial to satisfy, yet it is not. Consider choosing which web-
sites to visit and in which order. According to Internet Live Stats, 10 websites existed
on the Internet in 1992. To order these according to preference, one had to make 45
(10×9/2) binary choices. At that time, checking for completeness was tractable. In
the year 2016, the number of websites had increased to about 1,085,628,900, which
would require in the order of 1018 checks. This is no longer tractable, neither for
humans nor machines. And without being able to check for completeness, one cannot
check for transitivity. Similarly, checking for consistency in probabilistic inferences
in Bayesian belief networks is NP-hard; the same holds for approximations (Cooper
1990; Dagum and Luby 1993). In general, the more beliefs a person holds, the more
likely that checking coherence becomes intractable. Intractability entails that the prin-
ciple ‘ought implies can’ is invalid because nomind or machine can do what one ought
to do according to axiomatic rationality.

A similar argument can be made for the frequency of encountering uncertainty. The
axioms refer to well-defined beliefs or options that are mutually exclusive, like the
p’s and q’s in truth tables, whereas many nontrivial political, philosophical, or moral
beliefs tend to have fuzzy borders, which makes the task of deciding whether these
beliefs conform to a set of axioms fraught with uncertainty. In general, the set of future
states S and their consequences C is typically unknown in human affairs, medicine, or
finance, all of which are at least as uncertain as when planning a picnic. The prevalence
of uncertainty in important affairs can also be inferred from the notable absence of
detailed real-world examples in writings about axiomatic rationality.

Savage was relatively open about the limits of axiomatic rationality and pointed
out that these already affected his conception of small worlds. A person can always
consider a more refined small world, an analysis of which may not agree with the
original unrefined small world. The ultimate refinement would be what Savage called
the grand world. In his book, Savage (1954, p. 467) provided a single example of a
small world and none of a grand world.

To summarize, intractability implies that the empirical validity of choice axioms
cannot be verified, and uncertainty implies that the assumption of a small world (S, C)
underlying the choice axioms is invalid in the first place. Although the probability of
encountering a situation of uncertainty or intractability is undefined, one might con-
clude that these situations are the rule rather then the exception. That result implies
that a categorical interpretation of choice axioms as a universal norm for behavior
is impossible and thus invalid. If that is true and Conjecture 1 is true, then this also
questions the ‘instrumental’ justification of categorical norms, namely the claim that
violations of logical axioms are associated with substantial costs. Rather, these viola-
tions should have little impact on whether or not people reach their goals in everyday
life.
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1.2 How bad is incoherence?

Manyof Savage’s followers have ignored intractability and uncertainty, and interpreted
violations of logical coherence as signs of human irrationality. In this research, the term
coherence not only refers to conformity with choice axioms such as transitivity but
also includes truth-table logic and rules of probability (e.g., Tversky and Kahneman
1974). I will use the term logical rationality for this broader set of rules that includes
axiomatic rationality. A fundamental problem with logical rationality (as opposed to
axiomatic rationality) is that the various logical and statistical rules proposed as norms
do not speak unanimously (otherwise, there would not be centuries of debates among
statisticians), and, therefore, a judgment that is diagnosed as “irrational” because it
violates one rule, such as modus tollens, can be justified as rational because it satisfies
another rule, say Bayes’ rule (see Gigerenzer et al. 2012). Here, I do not pursue this
internal ambiguity of logical rationality but instead ask whether violations of logical
rules actually matter in the real world.

An entirely new discipline, behavioral economics, was created in the 1980s and
1990s to pursue the program of identifying systematic deviations from logical ratio-
nality, which was made popular by bestsellers proclaiming that “we are not only
irrational, but predictably irrational” (Ariely 2008, p. xviii). Wikipedia lists some 175
cognitive illusions, many of which are violations of coherence. Based on the claim
that people’s irrationality is persistent, libertarian paternalists (Thaler and Sunstein
2008) proposed that governments should “nudge” their citizens into better behav-
ior—to protect them not from external enemies, but from themselves. In this view,
people who deviate from logical rationality face economically significant losses (e.g.
Thaler and Sunstein 2008; Yates 1990). If true, this would provide indirect evidence
for the normative force of logical rationality in the real, mostly uncertain world.

To investigate whether incoherence indeed implies costs in the real world, Arkes
et al. (2016) conducted a systematic literature search on the evidence for detrimental
material consequences such as false beliefs, lower earnings, impaired health, lower
happiness, or shorter lives. In the over 100 studies on violations of transitivity that
they identified, not a single demonstration was found of a person becoming a money
pump, that is, being continually exploited due to intransitive choices. In the more than
1000 articles on preference reversals identified, of which only four actually tested
whether these turn people into money pumps or otherwise impose any costs, they
found that arbitrage or financial feedback made preference reversals and their costs
largely disappear. Arkes et al. then analyzed hundreds of studies on the Asian Disease
Problem and other framing effects, and found little to no evidence that ‘irrational’
attention to framing would be costly. The same result was found in the literature for
violations of the independence axiom, the Chernoff condition, and other ‘fallacies.’

Lack of evidence for costs should not bemisinterpreted as evidence for lack of costs.
However, this striking absence suggests that the large and ever-growing list of apparent
fallacies is a list of “logical bogeymen,” as psychologist Lola Lopes once put it, with
little measurable economic or psychological consequences (for details see Gigerenzer
2018). Moreover, violations of coherence were found to be beneficial in some studies.
For instance, Berg et al. (2011) reported that people who violated time-consistency
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and expected utility theory earned higher monetary payoffs that those who did not,
while Houston et al. (2007) reported that fitness maximization can imply violations
of transitivity. These results were obtained in situations of risk, not uncertainty. When
investigating the decision whether to participate in PSA screening for prostate cancer,
Berg et al. (2016) reported that among 133 economists, coherent Bayesians had no
more true beliefs than did incoherent Bayesians: the correlation between coherence
and accuracy of beliefswas zero, even slightly negative. Themost consistent economist
had the highest number of false beliefs.

Conjecture 2 There is lack of evidence that violations of logical rationality have detri-
mental consequences on people’s wealth, health, happiness, proportion of true versus
false beliefs, or some other measurable cost.

Note that Allais, Ellsberg, and others have argued that the axioms have questionable
normative force even in Savage’s small world. My point, however, is an empirical
one: Arkes, Gigerenzer, and Hertwig’s literature search did not find any studies that
systematically showed that violations of coherence actually matter for goals beyond
coherence. This notable absence of evidence poses a problem for a consequentialist
justification of axiomatic rationality.

My conclusion is that axiomatic rationality needs to be complemented with a nor-
mative theory of rationality that can deal with intractability and uncertainty, and with
goals beyond coherence.

2 Ecological rationality and uncertainty

How should we deal with uncertainty? Knight (1921) spoke of “intuitive feelings,”
“judgment,” and “experience,”without offering a formal theory. In hisGeneral Theory,
Keynes (1936) suggested relying on our animal spirits, on our spontaneous urge to
action, optimism, and hope, all of which make the wheels go round. Yet he too offered
no formal alternative. The roots for such an alternative can be found inHerbert Simon’s
(1979) work on bounded rationality and, specifically, in the concept of heuristics
(Gigerenzer et al. 2011; Gigerenzer and Selten 2001; Todd et al. 2012).

What are heuristics? The term is of Greek origin, meaning “serving to find out
or discover.” With its introduction into English in the early 1800s, it referred to a
useful tool for solving problems that cannot easily be handled by logic or probabilistic
inference. George Polya, Max Wertheimer, and Herbert Simon defined heuristics in
similar ways, as tools for finding a proof, solving a novel problem, and planning next
year’s budget. Einstein entitled his fundamental paper on quantum physics from 1905
“On a heuristic point of view concerning the generation and transformation of light.”
He used the term heuristic to indicate that the view presented was incomplete, even
false, yet nonetheless useful and of great transitory value on the path to building amore
correct theory (Holton 1988, pp. 360–361). This favorable image of heuristics took
a negative bend in psychology around 1970, when heuristics became associated with
errors in the heuristics-and-biases program (Tversky and Kahneman 1974). In this
influential work, deviations between coherence rules and people’s judgments became
attributed post hoc to heuristics such as availability. The relevant point here is that the
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heuristics-and-biases program subscribed to the classical view in epistemology that
axiomatic rationality is normative and psychology strictly descriptive. Yet that view
of psychology is incorrect.

2.1 Normative psychology

In Epistemology Naturalized, Quine (1969) argued that epistemology is a branch
of psychology. His argument was rejected on the grounds that it has a devastating
implication: to empty epistemology of its normative character (Bishop 2006). The
objection was based on the belief that psychology is a strictly descriptive science.

Conjecture 3 Parts of psychology are normative. Theoretical and empirical results
are used to prescribe what means people should use to achieve goals.

Consider the following two illustrations, one for situations of risk, the other for
uncertainty. It was found that laypeople (Tversky and Kahneman 1980) and physi-
cians (Eddy 1982) had great difficulties making Bayesian inferences from conditional
probabilities (such as the sensitivity and specificity of a cancer screening test). Yet
when the information was presented in natural frequencies (simple joint frequencies
that have not been conditionalized), Bayesian reasoning substantially improved both
in undergraduates (Gigerenzer and Hoffrage 1995) and physicians (Gigerenzer 2014).
The theoretical explanation for this empirical result is that natural frequencies facilitate
the computation of posterior probabilities. This result leads to the prescription:

People ought to use natural frequencies to improve Bayesian reasoning.

This prescription amounts to an inference from is to ought. It is valid for situations of
risk where the assumptions necessary for Bayes’ rule hold (as opposed to situations of
uncertainty). Using natural frequencies (as opposed to conditional probabilities) helps
to reduce the errors in medical diagnosis and in the evaluation of evidence in court. It
leads to further prescriptions such as that natural frequencies should be used to teach
Bayesian reasoning, which is currently implemented in both high school textbooks
and medical curricula (Gigerenzer 2014).

Consider next a problem companies face: How should managers predict which
customers will continue to make purchases in the future? Wübben and von Wangen-
heim (2008) observed that experienced managers rely on the hiatus heuristic: “If the
customer has not made a purchase within 9 months, delete from the customer base,
otherwise not”. To rely on a single reason—the hiatus—contradicts standard customer
base models such as the Pareto/NBD (negative binomial distribution) model, which
processmore cues and rely on complex stochasticmodels to estimate for each customer
the probability that he or she will make future purchases. Testing both alternatives,
they found that the simple heuristic predictedmore accurately than the complexmodel,
even though (or because) it did not use the total evidence available. Similarly, heuris-
tics such as fast-and-frugal trees and take-the-best (see below) also rely on solely one
reason to make a prediction, although they may initially search through more cues.
Green andMehr (1997) reported that these one-reason heuristics can predict the risk of
ischemic heart disease more accurately and rapidly than standard logistic regression
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models. The study of ecological rationality analyzes the conditions E under which
relying on one good reason rather than on linear rules that use all cues can be expected
to lead to more accurate inferences and is faster and involves less information to boot
(see Sects. 2.5–2.9). These results lead to a second prescription:

If conditions E hold, then people ought to rely on one-reason heuristics rather
than on linear models.

Note that ignoring part of the cues and relying on only one reason has been previously
interpreted as a cognitive error in the heuristics-and-biases program and attributed to
our cognitive limits. It also appears to conflict with the principle of total evidence.
Under uncertainty, however, this can be a rational strategy. Less can be more.

These examples demonstrate that psychology is both a descriptive and a norma-
tive discipline. Thus, naturalizing epistemology by taking psychology into account
does not imply emptying epistemology of its normative content (Bishop and Trout
2005). What it does do is question the divide of disciplines into strictly normative and
descriptive ones, and the associated justification of a priori, intuitive, and categorical
norms (Schurz 2014).

2.2 Methodological principles

The study of ecological rationality is characterized by threemethodological principles:

1. Formal models of heuristics, as opposed to vague labels.
2. Competitive testing of heuristics, as opposed to null hypothesis tests.
3. Tests of predictive power, such as in out-of-sample prediction, as opposed to data

fitting.

The study by Wübben and von Wangenheim (2008) embodies these principles: The
hiatus heuristic is a formal model, it is tested against the best competitors in the field,
and it predicts future behavior rather than fitting previously known data. I emphasize
these principles because they have been largely neglected in past research on heuris-
tics. Heuristics such as availability and representativeness or terms such as “system
1” (Kahneman 2011) are vague labels, and thus can neither be tested against com-
petitors nor predict behavior. The function of these labels is to ‘explain’ post hoc
deviations from axiomatic rationality (Gigerenzer 1996). Post hoc data fitting is a key
methodological vice in studies of rationality. Like vague labels, the use of multiple
free parameters that are rarely ever fixed allows for fitting any data well without being
able to predict well. Consider expected utility theory and its modifications such as
cumulative prospect theory, which have up to five adjustable parameters. In a review
of half a century of economic literature, Friedman et al. (2014) conclude that their
“power to predict out-of-sample is in the poor-to-nonexistent range” (p. 3).

2.3 Epistemic goals

Epistemic rationality is often seen as promoting coherent beliefs rather than incoherent
ones, and true beliefs rather than false beliefs. Implicitly, the assumption is often that
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coherence is associated with truth. Yet, as we have seen, there is lack of evidence
both that coherent beliefs are correlated with true beliefs and that incoherence has
substantial costs. Furthermore, in situations of uncertainty, coherence is no longer
clearly defined. All of this requires extending epistemic goals from coherence to other
goals such as the accuracy of judgment (truth), its speed (how fast a judgment can be
made), and frugality (how many cues need to be searched before a judgment can be
made). To decide about the ecological rationality of a heuristic, these goals need to be
clearly defined. For instance, accuracy can be decomposed into hit rate (such as the
proportion of patientswho are diagnosed as having a disease among thosewho actually
have the disease) and false alarm rate (the proportion of patients who are diagnosed
as having a disease among those who do not have it). Heuristics can be designed to
achieve a desired balance between the two rates. For instance, the question of which
fast-and-frugal trees are ecologically rational for which balance of hits and misses has
been solved (Luan et al. 2011).

The extension of goals of rationality from coherence to performance has been
called the “boldest claim” inherent in ecological rationality (Rich 2018, p. 541). Yet
this extension hasmuch in commonwith existing approaches, such as Kitcher’s (1992)
naturalism and Goldman’s (1999) epistemological reliabilism.

2.4 Less-is-more effects

According to one view, heuristics are subject to an accuracy–effort trade-off (Kah-
neman 2011; Shah and Oppenheimer 2008): Heuristics save effort but at the cost
of accuracy. In this view, the rationality behind relying on heuristics lies solely in
reducing effort, winning time, and avoiding information search. This is probably the
dominant interpretation of heuristics in philosophy and the social sciences.

Conjecture 4 Accuracy–effort trade-offs hold in situations of risk where the optimal
course of action is calculable but not necessarily in situations of uncertainty. Under
uncertainty, less-is-more effects exist.

The finding that the hiatus heuristic predicts more accurately than the Pareto/NBD
model is a case in point. Although the Pareto/NBD model has all the information the
heuristic uses and more, the heuristic generates more accurate predictions (for other
less-is-more effects, see Gigerenzer et al. 2011).

Less-is-more effect Assume two strategies, P and T . P uses only a proper subset
of the information that T uses. If P makes more accurate predictions, this is called a
less-is-more effect.

Less-is-more does not imply a monotonic relationship between decreasing effort
and increasing accuracy. Rather, there is generally an inverse U-shaped relationship
between effort and accuracy, meaning that after some point on this curve, more infor-
mation search is not only costly but also reduces accuracy. This phenomenon has been
discussed as apparent epistemic irresponsibility (Bishop 2000). Less-is-more effects
should not occur if accuracy–effort trade-offs were generally true. To understand why
and when less-is-more effects can be expected, I will first introduce the bias–vari-
ance dilemma as a general alternative to the accuracy–effort trade-off in situations

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Synthese (2021) 198:3547–3564 3557

Fig. 1 A visual analogy of the two components of prediction error: bias and variance. The bull’s eye is the
unknown true value µ (here: 0, 0) to be predicted. Each dart represents a predicted value xm based on a
random sample from the population with the true value µ. Bias is zero if the mean prediction ‘hits’ the
target. Left: A systematic bias, whose size is the distance between themean of the darts thrown and the bull’s
eye (x̄ − µ), and a low variance, that is, the darts are close together. Right: Zero bias (x̄ − µ), that is, the
darts are lined up exactly around the bull’s eye, but considerable variance. The example illustrates situations
where biased minds can make more accurate predictions than unbiased ones do (Gigerenzer 2016)

of uncertainty, and thereafter a specific analysis of the ecological rationality for the
take-the-best heuristic and similar one-good-reason heuristics.

2.5 The bias–variance dilemma

Consider a minimal form of uncertainty: the problem of estimating the true value µ
in a population on the basis of random samples. Each of M samples (m� 1, …., M)
generates an estimate xm, with x̄ as their mean. This situation involves uncertainty
because the true value is not known. Yet the uncertainty is minimal because the pop-
ulation is stable and the samples are random. Here, the total error has three sources
(Geman et al. 1992):

Prediction error � (bias)2 + variance + ε, (1)

where ε is unsystematic noise (mean zero and uncorrelated with bias), and bias �
x̄ − µ, that is, the average deviation of the mean of the sample estimates from the
true value. For instance, if the true temporal trajectory of a variable is a polynomial of
second degree and a linear regression is used to predict the variable, the model has a
systematic bias. Variance� 1

m

∑
(xm − x̄)2, that is, the mean squared deviation of the

sample estimates from their mean x̄ . The variance component reflects the sensitivity
of the predictions to different samples drawn from the same population. Variance
decreases with larger sample sizes and increases with the number of free parameters
estimated. Figure 1 provides a visual depiction of bias and variance (Brighton and
Gigerenzer 2012).
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In it, the bull’s eye represents the true value, and each dart the estimate from a
sample. The darts on the left-hand dartboard show a systematic bias but low variance.
In contrast, the darts on the right-hand dartboard are lined up exactly around the bull’s
eye and show no bias but considerable variance. A moderate bias with low variance
(left) may lead to better accuracy than would a zero bias with high variance.

The variance component of the error corresponds to the concept of overfitting. A
model with many free parameters may fit the data perfectly but predict worse than
simpler models (Forster and Sober 1994).

2.6 Heuristics reduce error due to variance

Heuristics can reduce error due to variance in several ways. A total reduction of vari-
ance can be achieved by a heuristic that is insensitive to data by using no adjustable
parameters. In Fig. 1, this insensitivity would correspond to a set of darts that all
end up at the same location, showing no variance due to fluctuations in samples. A
hiatus heuristic with a fixed hiatus is an example. Such a heuristic will avoid being
overly sensitive to the peculiarities of the sample information available. Another case
in point is the 1/N heuristic in investment, which divides a sum of money equally over
N options. In contrast, Markowitz’s mean–variance portfolio—for which Markowitz
was awarded the Nobel prize in economics—calculates the ‘optimal’ weights for each
option from the available data. Yet 1/N can lead to better returns than the mean–vari-
ance portfolio can (DeMiguel et al. 2009). The hiatus heuristic and 1/N ignore the
total evidence from sample data.

In other situations, however, ignoring the evidence from samples may increase bias
to the extent that the total error increases. Heuristics that learn from samples can
still reduce error due to variance by (1) ignoring valid predictors, (2) not estimating
weights, and (3) not estimating the covariance matrix between cues or reasons and
treating the cues as independent. Heuristics such as take-the-best combine all three of
these principles.

The purpose of the following case study is to explain in more detail the study of
ecological rationality and how it differs from axiomatic rationality.

2.7 A case study of ecological rationality: take-the-best

Consider the task of inferring which of two alternatives has the larger value on some
criterion, such as which contestant will win a tennis match or which high school will
have more drop-outs. To make this inference, there are n cues or reasons. Experiments
showed that people tend not to use all cues, even if each is valid, and often proceed in
a lexicographic order. The term lexicographic has its origin in the way one looks up a
word in a lexicon; first, one searches for the first letter, then the second, and so on. In
decision theory, the term refers to a process in which one looks up cues in sequential
order and can stop search immediately after the first or a later cue if a stopping rule is
satisfied. Because lexicographic choice cannot be mapped into a utility function, and
may not conform to the choice axioms, it has been interpreted a priori as irrational.
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The take-the-best heuristic is a model of lexicographic choice (Gigerenzer and
Goldstein 1996). Likemanyheuristics, take-the-best has three buildingblocks: a search
rule, a stopping rule, and a decision rule. For convenience, assume that all cues are
binary (0 and 1) and the cue value that signals a higher criterion value is 1.

1. Search rule Search cues in order of their validity v.
2. Stopping rule Stop search on finding the first cue that discriminates between the

alternatives (i.e., cue values are 1 and 0, or 0 and 1).
3. Decision rule Infer that the alternativewith the positive cue value (1) has the higher

criterion value.

The validity v of a cue is given by:

v � C/(C + W ), (2)

where C is the number of correct inferences when a cue discriminates, and W is the
number of wrong inferences, all estimated from samples.

Numerous studies have shown that in situations where take-the-best is ecologically
rational (see below), a large proportion of people tend to rely on it. This includes student
populations (e.g., Bergert and Nosofsky 2007; Bröder 2012), airport customs officers,
police officers, and burglars (e.g., Garcia-Retamero and Dhami 2009; Pachur and
Marinello 2013). However, people who rely on this heuristic appear to commit several
transgressions against logical rationality: First, as mentioned before, lexicographic
choices cannot be represented by a utility function. Second, choices appear to violate
the principle of total evidence by (1) ignoring all dependencies between cues, that is,
the entire covariance matrix, when ordering the cues by v, and (2) ignoring all other
cues after the first cue is found that allows for a judgment, leaving valid information
on the table. Third, variants of the stopping rule can lead to systematic intransitivity
(Arló-Costa and Pedersen 2013). Each of these properties has been interpreted as a
cognitive error. In the words of Keeney and Raiffa (1993), for instance, lexicographic
rules are “naively simple” and “will rarely pass a test of ‘reasonableness’” (p. 78).

However, Keeney and Raiffa argued solely from their a priori normative view of
axiomatic rationality, without any testing. Since the mid-1990s, others have gone on to
conduct such tests, showing that take-the-best can not onlymodel people’s choices (the
descriptive question) but also predict ‘objective’ criteria as accurately as or better than
complex models, including multiple regression and sophisticated machine learning
algorithms such as classification and regression trees, support vector machines and
random forests (Brighton and Gigerenzer 2015; Czerlinski et al. 1999; Şimşek and
Buckmann 2016). Take-the-best corresponds to the left-hand dart board in Fig. 1, with
systematic bias but low variance, while complex models with many free parameters
correspond to the right-hand dartboard, unless sample sizes are very large.

The amount of bias take-the-best has depends on the structure of the environment.
What are the environmental conditions E that take-the-best and similar one-reason
heuristics can exploit?
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2.8 Ecological axioms

The term environment refers to the alternatives, cues, criteria, and other factors relevant
for the decision maker. The environment determines the bias of a heuristic and other
strategies. Which environmental structures ‘help’ lexicographic heuristics perform
well so that they have a small bias (in addition to small variance)? Because the true
value may not be accessible and will differ from problem to problem, the question
asked is a comparative one: Can we identify general environmental structures in which
the bias of take-the-best is equal to that of linear models? Answering this question
helps identify situations where take-the-best can be expected to be more accurate than
linear models, that is, when the bias is the same but the heuristic generates less error
by variance, resulting in smaller total error (Eq. 1).

Consider a choice between objects A and B, based on n cues, where the value of
the ith cue is represented by xi and weighted in the linear payoff function by wi.
To simplify, assume that the cues are binary and the weights are nonnegative. We
know of three environmental conditions where the bias of take-the-best is the same as
that of linear models: noncompensatoriness, dominance, and cumulative dominance
(Gigerenzer 2016). These features can be seen as ecological axioms:

Noncompensatoriness. The weights w1, w2, w3,… wn are noncompensatory if they
satisfy the n− 1 inequality constraints:

wi >

n∑

j�i+1

w j , i � 1, 2, . . . , n−1. (3)

An example is the set of weights {1, ½, 1/4, 1/8}. If the weights are noncom-
pensatory, then a linear rule (with the same order of cues) will always lead to the
same choice as a lexicographic rule (Martignon and Hoffrage 2002). Take the exam-
ple above. If the lexicographic rule yields decisions on the basis of the first cue (with
weight 1), every linear rule will match this choice because the sum of all other weights
(½ + ¼ + ···) will always be smaller than the weight of the first cue. Thus, if non-
compensatoriness holds, then a lexicographic heuristic will have the same bias as any
linear model with the same order of cues.

Dominance If alternative A has a value higher than or equal to alternative B on all
n cues and a higher value on at least one cue, then alternative A dominates alternative
B. Thus, if dominance holds, then a lexicographic heuristic will have the same bias as
any linear model.

Cumulative DominanceThe cumulative profile of an alternative consists of n values,
where the ith value is the sumof the first i values. AlternativeA cumulatively dominates
B if its cumulative profile exceeds or equals the cumulative profile of B in every term
and exceeds it in at least one term (Baucells et al. 2008).Dominance implies cumulative
dominance, but not vice versa. If cumulative dominance holds, then a linear rule (with
the same order of cues) predicts the cumulative dominant object, just as a lexicographic
rule does.

In sum, if either noncompensatoriness, dominance, or cumulative dominance holds,
then take-the-best or similar lexicographic heuristics will have the same bias as a linear
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model that relies on more cues and ‘optimal’ weighting. In that case, a lexicographic
heuristic can be said to be ecologically rational relative to any linearmodel because one
can expect (at least) the same accuracy with less effort. The three conditions explain
when to expect this. They do not explain when and why heuristics can predict more
accurately, which can, however, be understood from Eq. 1: heuristics tend to reduce
error by variance, so that the total error of the heuristic can be less than that of a linear
model, such as when the bias of the heuristic is not much higher than that of the linear
model.

Noncompensatoriness refers to the relative strength of the cues in the environment,
while the two dominance conditions refer to the relative quality of alternatives (Kat-
sikopoulos 2011). The result can be generalized from take-the-best to other sequential
search (lexicographic) heuristics, with single-cue heuristics as a special case. Now we
can make the conditions E in the prescription in Sect. 2.1 explicit:

If conditions E hold—noncompensatoriness, dominance, or cumulative domi-
nance—then people ought to rely on take-the-best rather than on linear models.

2.9 How often do these favorable conditions hold?

Şimşek (2013) analyzed 51 natural data sets from online repositories, textbooks,
research publications, packages for R statistical software, and individual scientists’
collected field data. The data sets spanned areas as diverse as biology, business,
computer science, ecology, economics, education, engineering, and medicine, among
others. The number of cues ranged from 3 to 21, which were numeric or binary; the
number of objects (alternatives) ranged from 12 to 601, which resulted in a num-
ber of possible pairwise comparisons ranging from 66 to 180,300. In each of these
comparisons, Şimşek examined how often one or more of the three conditions—non-
compensatoriness, dominance, and cumulative dominance—was satisfied. The result
was surprising. The median for the 51 data sets was 90% (Şimşek 2013). That is, in
half of the data sets, 90% or more of the decisions encountered were such that a lexico-
graphic rule yielded the same prediction as a linear model. When the continuous cues
were dichotomized at their medians, that is, transformed into binary cues, this num-
ber increased to 97%. This means that in the majority of the cases, the lexicographic
heuristics had the same bias as a linear model. Together with their potential for reduc-
ing variance, these results explain when and why simple heuristics can outperform
linear models in prediction.

3 Rationality under uncertainty and intractability

In this article, I argued that the domain of axiomatic rationality is defined by Savage’s
small worlds (S, C) where the exhaustive and mutually exclusive set of future states S
of the world and their consequences C is known. My first conjecture is that outside of
these stable, well-defined situations, axiomatic rationality has no normative force. My
second, related conjecture is that despite the widespread interpretations of violations
of logical rationality as signs of human irrationality, there exists little to no empirical
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evidence that these violations would incur substantial costs such as diminished health,
wealth, or happiness. The third conjecture is that psychology can inform prescriptions
for what people should do to achieve a given goal, which is the topic of the theory
of ecological rationality. The study of heuristics extends axiomatic rationality from
small worlds to situations of uncertainty and intractability, and from coherence to
performance goals such as predictive accuracy, speed, and frugality. Developing such
a theory entails the descriptive study of how individuals and institutions actually make
decisions and the prescriptive study of the ecological rationality of heuristics. It also
teaches us that in situations of uncertainty, less information can be more beneficial.

These results conflict with the ideal of an a priori, categorical interpretation of
axiomatic rationality and, more generally, logical rationality. The very existence of
uncertainty and intractability defies choice axioms or logical rules as universal norms.
Ecological rationality, in contrast, emphasizes the adaptive character of rules or heuris-
tics to reach goals. It provides a formal approach to what is called instrumental or
practical rationality. Last but not least, it can help to put an end to the idea that psy-
chology has nothing to offer for understanding the nature of rationality.
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